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Abstract: 
 
Quartz Sensor stability was mathematically modeled using data from Paroscientific pressure sensors 
and Quartz Seismic Sensors accelerometers. Qualitatively, we looked for models that relate to physical 
reality and quantitatively we looked for the best fits with the fewest free parameters and the best 
predictive behavior. Stability data were fit with various models and the residuals between the data and 
each fit were compared.  Fits were derived from early data points and extrapolated to see which fits 
could best predict future behavior in the hope that long-term stability can be predicted based on short-
term pre-deployment testing. All of the fits used worked well and the absolute drift can be modeled 
down by almost two orders of magnitude. In general, the “Power + Log” fit worked best and produced 
small residuals when extrapolated for an extended period.  
 
Background: 
 
Paroscientific and Quartz Seismic Sensors have developed new sensors and measurement techniques 
for dual-purpose Disaster Warning Systems and Geodetic Research. Earthquake and tsunami warning 
systems require high-resolution, high-speed, high-range sensors to measure events occurring from a 
fraction of a second to many hours. The slow strain build-up leading to earthquakes and tsunamis 
require stable measurements for decades. 
 
The initial goal is to make geodetic measurements of uplift or subsidence (depth changes or tilt) to 
better than 1 cm/year at a depth of 4000 meters and a span of 1 km. At zero load, typical drift of all 
types of quartz crystal sensors is in the direction of higher frequency (higher output) with a magnitude 
of about 100 parts-per-million of full-scale per year (ppm/year) for the first year. At full-scale load, drift is 
in the direction of lower frequency and lower output. In both cases, initial drift tapers off rapidly in the 
first few months. Our goal is to model and predict the sensor stability. If the full-scale range of the 
pressure sensors is 4000 meters, then the requirement on pressure sensor stability is a few ppm/year. 
If the full-scale range of the accelerometers in our Triaxial Accelerometer Assembly is 3 G's, then the 
requirement on accelerometer stability is also a few ppm/year. In-situ calibration techniques have been 
developed to correct for the drift of quartz pressure sensors and triaxial accelerometers (Reference 1). 
Periodic measurements are made to a single point reference and the offset drift is subtracted from the 
in-situ readings. This calibration method can distinguish sensor drift from real seafloor movements. The 
mathematical models can aid in drift analyses and provide insights into the root causes of sensor drift. 
 
Root Causes of Drift: 
 
There are at least 2 causes of drift that are related to whether the sensors are unloaded or loaded. 
When the sensors are mostly unloaded the resonator frequencies and indicated signal outputs at both 
zero and full-scale increase with time. One mechanism that can cause increasing outputs is quartz 
crystal aging or “outgassing” whereby the resonator mass decreases and frequencies increase with 
time. These frequency changes must be converted to equivalent error forces through the conformance 
(linearization) equation. Appendix I to this report describes the relationship between offset changes and 
span changes. Creep is in the direction of lower outputs and is due to attachment or mechanism 
“creep” deflections that work against the spring rate of the mechanism to generate viscoelastic error 
forces. The drift effects due to outgassing and creep may be subtracted from the measured readings to 
correct for drift (Reference 1). 
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Figure 1 illustrates the combined drift effects of outgassing and creep on a 100 MPa full-scale range 
pressure sensor. The fits to 7 years of typical drift data at 0 were extrapolated and subtracted from 4 
months of drift data held mostly at pressure A = 100 MPa. The resulting curves illustrate Drift @ 0 
(outgassing), Drift @ A (creep), and Drift @ A combined. 
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Figure 1 
As shown in Figure 2, the combined drift can look quite different depending on the pressure profile. 
 

Drift due to Outgassing, Creep, and Combined 
for Different Start Times of Pressurization
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Figure 2 
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Mathematical Models:  
Different mathematical models of quartz sensor stability have been developed including Wearn, R. B. 
Jr., and N. G. Larson (1982), Measurements of the sensitivities and drift of Digiquartz pressure sensors, 
Deep Sea Res., 29, 111–134, doi:10.1016/0198-0149(82)90064-4 and Polster, et al (2009) Effective 
resolution and drift of Paroscientific pressure sensors derived from long-term seafloor measurements 
http://onlinelibrary.wiley.com/doi/10.1029/2009GC002532/abstract . Three fits were studied: 
 
“Power + Log”:  P = A*t^B + C*LN(t) + D 
“Log”:        P = A*LN(t-t0) + D 
“Exp + Linear”: P = A*exp(-t/t0) + C*(t/365) + D 
 
P is the absolute pressure, t is the # of days passed and A, B, C, t0 and D are free parameters. The 
Drift is the difference between P and the offset D. 
 
For “Power + Log” fit, 
Drift = At^B + C*LN(t) and  
Slope = AB*t^(B-1) + C/t 
 
We use this equation with a condition that B < 1, so the power of t of the slope will always be negative. 
This means that as t goes to infinity, the slope approaches zero. 
 
For “Log” fit, 
Drift = A*LN(t-t0) and  
Slope = A/(t-t0) 
 
As t goes to infinity, the denominator approaches infinity so the slope approaches zero. 
 
For “Exp + Linear” fit,  
Drift = A*exp(-t/t0) + C*(t/365) and  
Slope = - (A/t0)exp(-t/t0) + C/365 
 
As t goes to infinity, the exponential term goes to zero (because it is an exponential decay with a 
negative exponent), so we are left with the slope approaching C/365 in units of drift per day. 
 
After a long period of time, the slopes of the “Log” and “Power + Log” fits approach zero, but the slopes 
of the “Exp + Linear” fits approach a constant value. 
 
Fits to Outgassing Drift of Pressure Sensors: 
 
The three fits were applied to model the stability of 5 pressure sensors with 200 days of data in two 
ways: First the residuals between the data and the fits were calculated using all 200 days of data. Then 
fits were made using just the data points from the first 17 days and extrapolated to 200 days. Drift 
residuals are expressed in parts-per-million of full-scale (ppm). Throughout this write-up, t is the time in 
days and t0, A, B, C, etc. are free parameters and their values are determined by using the Solver 
function in Microsoft Excel such that residuals between the selected data points and the actual fit are 
minimized. However, even with the same functions, same data, and same constraints, different initial 
values used by Solver produce different residuals. For functions involving the natural log function, the 
point at t = 0 was not used (since natural log of 0 is undefined). 
 

http://dx.doi.org/10.1016/0198-0149(82)90064-4�
http://onlinelibrary.wiley.com/doi/10.1029/2009GC002532/abstract�
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Residuals are shown on the left axis and total drift shown on the right axis (ppm of full-scale). 
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SN123148
Comparison of Extrapolated Fits (First 17 Days Extrapolated over 200 Days)
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SN123149
Comparison of Full Fits (Fit over entire 200 Days)
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Comparison of Extrapolated Fits (First 17 Days Extrapolated over 200 Days)
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SN123150
Comparison of Full Fits (Fit over entire 200 Days)
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Comparison of Extrapolated Fits (First 17 Days Extrapolated over 200 Days)
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The Graphs below compare the residuals of the “Power + Log” fit for different 
baselines of 17, 30, 60, and 90 days extrapolated to the full 200 days data set. 

SN123148
Comparison of Extrapolated Fits (Different # of Days Extrapolated over 200 Days)

-7

-6

-5

-4

-3

-2

-1

0

1

2

03-Nov-11 23-Dec-11 11-Feb-12 01-Apr-12 21-May-12 10-Jul-12

R
es

id
ua

ls
 (p

pm
)

17 Days
30 Days
60 Days
90 Days
200 Days

 
SN123150

Comparison of Extrapolated Fits (Different # of Days Extrapolated over 200 Days)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

03-Nov-11 23-Dec-11 11-Feb-12 01-Apr-12 21-May-12 10-Jul-12

R
es

id
ua

ls
 (p

pm
)

17 Days
30 Days
60 Days
90 Days
200 Days

SN123149
Comparison of Extrapolated Fits (Different # of Days Extrapolated over 200 Days)

-12

-10

-8

-6

-4

-2

0

2

4

03-Nov-11 23-Dec-11 11-Feb-12 01-Apr-12 21-May-12 10-Jul-12

R
es

id
ua

ls
 (p

pm
)

17 Days
30 Days
60 Days
90 Days
200 Days

 



Paroscientific, Inc.                                                           Technical Note 
Precision Pressure Instrumentation                                                                          Doc. No. G8095 Rev. E  

 
Paroscientific, Inc.  9

Fits to Creep Drift of Pressure Sensors:  
The curves for sensor drift due to creep are similar for both pressure sensors and accelerometers. The 
load-generating mechanisms for these sensors are completely different. The pressure sensors convert 
pressures to forces on the quartz resonators using Bourdon tubes or bellows. The seismic instruments 
generate forces by accelerations acting on suspended inertial masses. The attachments of the quartz 
resonators to the force-producing structures are similar so drifts due to creep are likely related to the 
attachment joints. Loads applied to the attachment joints produce viscoelastic creep (deflections) that 
act against the spring rates of the mechanisms to generate error forces. The quartz resonator cannot 
distinguish the error forces due to creep from the sensed input forces. 
 
 
The ongoing, unidirectional drift due to outgassing must be subtracted from the total combined drift in 
order to determine the drift due to creep as shown in Figure 1. The pressure sensor creep was then 
modeled with the same three fits that were used to model outgassing. The Power + Log and Log fits 
were almost identical. This suggests that the natural log is dominant in characterizing creep. Figure 3 
shows residuals with a standard deviation of 0.5 ppm. 
 

Drift @ Full Scale Creep (A = 100 MPa), Log Fit (0) Creep, & Residuals
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Figure 3 
 
The Kelvin-Voigt viscoelastic model (Appendix II) predicts that drift due to creep is proportional to the 
reactive spring rate of the mechanism and the applied load. Creep is inversely proportional to the 
modulus.  The time dependence is an exponential function with a time constant equal to the modulus 
divided by the viscosity. When the load is removed, a viscoelastic “recovery” occurs. 
 
Dr. Hiroaki Kajikawa and his colleagues at the National Metrology Institute of Japan--(AIST) performed 
seven years of testing with quartz pressure sensors mostly at zero pressure (Reference 2). Then four 
months at full-scale pressure at 100 MPa was applied to measure creep, and then returned to zero 
pressure to monitor the viscoelastic recovery (Reference 3). The fit to the creep model was reversed in 
sign to model the recovery and the outgassing was added to predict the combined recovery curve. As 
shown in Figure 4, the predicted recovery compares well to the data plots excerpted from Reference 3. 
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Drift @ 0, Drift @ A-Combined, and Recovery 
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 Comparison Fits on Accelerometers:  
There is a need for a device and in-situ calibration method for improved seismic and geodetic 
measurements. Traditional strong motion sensors do not have the sensitivity or stability to make good 
long-term geodetic measurements. Traditional broadband seismometers and tiltmeters operate over a 
small fraction of Earth’s 1G gravity vector and do not have the range to measure strong seismic events 
and have no absolute reference for long-term measurements. 
 
The goal is to make improved surface, subsurface and submarine measurements of seismic events and 
geodetic measurements of earth movements such as tilt, subsidence and uplift. The initial geodesy 
requirement is to measure earth movements to better than 1 centimeter per year at a span of 1 
kilometer. This is equivalent to a tilt of 10 micro-radians or a 10 micro-G’s tilt (sine) component of 
Earth's 1 G static gravity. 
 
A new Acceleration Ocean Bottom Seismometer (AOBS) has been developed and tested by Y. Fukao, 
H. Sugioka, A. Ito, and H. Shiobara. The AOBS contains a Triaxial Accelerometer that is calibrated with 
an internal alignment matrix such that measurements of Earth’s gravity vector are rotationally invariant 
with respect to the direction of Earth's plumb line. Drift of the Triaxial Accelerometer is compensated for 
by measuring the changes in the measured values of the Earth's invariant static gravity vector. 
 
The 3 fits were used to model the stability of a Triaxial Accelerometer using the invariant G vector as a 
reference. The first graph below shows small residuals using the full 220 days data set. However, the 
“Power + Log Fit” is much better than the “Exp + Linear Fit” when only the first 30 days are used to fit 
the entire 220 days of data as shown in the second plot below. The accelerometer drifts in the same 
direction as the pressure sensors; however, the scales have been inverted because of the sign 
convention used for positive G. The “Power + Log Fit” is good to a few ppm of the 2G full-scale 
accelerometers. 
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Nano-Resolution Accelerometer
Comparison of Residuals vs. Time

Extrapolated Fits Using First 30 Days
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Conclusion:  
Mathematical models of stability were evaluated to determine the best fits that can distinguish Quartz 
Sensor drift from real seafloor movements. These models can be applied to pre-deployment calibration 
data, in-situ re-calibration test data, and post-deployment stability measurements. Stability data were fit 
with various models and the residuals between the data and each fit were compared. Fits were also 
derived from early data points and extrapolated to see which fits could best predict future behavior. 
 
Both of the presumed root causes of drift, (outgassing and creep) were successfully modeled to a few 
parts-per-million and a standard deviation less than 1 ppm. 
 
Because of the common quartz crystal “core” technology, these mathematical models may be applied 
to the pressure sensors made by Paroscientific, Inc. and the accelerometers and tiltmeters made by 
Quartz Seismic Sensors, Inc. 
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Appendix I - Relationship between Changes in Offset and Span 

 
The equation that characterizes the outputs of Quartz Resonator Sensors under load is: 
 
P = C[(1 – τ0

2/τ2) – D(1 – τ0
2/τ2)2] 

Where: 
τ  is the period output,  
τ0 is the period output at P = 0,  
C is the scale factor; and  
D is the linearization factor. 
 
To first order,               P = C[1-τ0

2/τ2] 
 
The nominal change in output period under full scale load is ±10 %.  The change in period with the 

resonator under compression is nominally +10 % and under tension –10 %.                
 
Let  τfs = aτ0   where a = 1.1 (for compression) or 0.9 (for tension) 
 
The pressure at zero is:         P0 (τ = τ0) = 0 
 
And the pressure at full scale is:    Pfs (τ = τfs) = C[1 – τ0

2/(aτ0)2] 
   
            Pfs (τ = τfs) = C[1 – (1/a2)] 
 
The span = Pfs – P0    Span = Pfs (τ = τfs) - P0 (τ = τ0) = C[1 – (1/a2)] 
 
 
For a very small change (drift), δ, in the period output, then the new pressure output, P’, is: 

 
             P’ = C[1-τ0

2/(τ+ δ)2] 
 

The new pressure outputs at 0 and full scale are: 
 
                            P0’(τ = τ0) = C[1 – τ0

2/(τ0 + δ)2] 
 
                                Pfs’(τ = τfs) = C[1 – τ0

2/(aτ0 + δ)2] 
 
The change in offset due to drift δ is the new pressure output at zero, P0’. 
 

∆Offset = P0’(τ = τ0) - P0 = C[1 – τ0
2/(τ0 + δ)2] -0 

 
  ∆Offset = C[(2τ0δ + δ2)/(τ0

2
 + 2τ0δ + δ2)] 

 
Since τ0 >> δ,                     ∆Offset = C(2δ/τ0) 
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The span = Pfs – P0, and any change in the span due to a drift, (change in period, δ,), is the 
difference between the new span after the drift is induced and the old span without drift:  
                                     ∆Span = (New Span – Old Span)  
 
                                     ∆Span = (Pfs’ – P0’) – (Pfs – P0) 
 
                                                 = C[1 – τ0

2/(aτ0 + δ)2] –  C[1- τ0
2/(τ0 + δ)2] –  C[1 – (1/a2)] 

 
                                      = C[-τ0

2/(a2τ0
2 + 2aτ0δ + δ2) + τ0

2/( τ0
2 + 2τ0 δ + δ2) – 1 + 1/a2 

 
                                   ∆Span = C[– 1/(a2 + 2a(δ/τ0)) + 1/(1 + 2(δ/τ0)) – 1 + 1/a2] 
 

∆Offset = C(2δ/τ0) 
 
        ∆Offset / ∆Span = [a3 + 2a3(δ/τ0) + 2a2(δ/τ0) + 4a2(δ/τ0)2] / [1-a3] 
 
Since (δ/τ0) is very small, the numerator can be approximated with the leading term a3 and: 
 

∆Offset / ∆Span = a3/(1 – a3) 
Examples: 
For a = 1.1 (compression),   ∆Offset / ∆Span = 1.13/(1 – 1.13) = – 4.02 
For a = 0.9 (tension),            ∆Offset / ∆Span = 0.93/(1 – 0.93) =  +2.69 
  
Plotted below are the values of ∆Offset / ∆Span for various “a” values expressed as percent 
period change in Tension and Compression. 
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Appendix II   Kelvin–Voigt Model of Creep Drift 

 
The Kelvin–Voigt model represents loads applied to a purely viscous damper, D, and purely elastic 
spring, S, connected in parallel as shown in Figure 1. 

 
Figure 1   Kelvin–Voigt Model 

 

Since the spring and damper are arranged in parallel, the strains in each component are equal:  

Strain = εTotal  =  εD  =  εS  

The total stress will be the sum of the stress in each component: 

Stress = σTotal = σD + σS  

The stress in the spring equals the modulus of elasticity, E, times the strain in the spring. The stress in 
the damper equals the viscosity, η, times the rate of change of strain in the damper. Thus in a Kelvin–
Voigt material, stress σ, strain ε, and their rates of change with respect to time t are given by: 

dt
tdtEt )()()( εηεσ +=  

The above equation may be used for both shear stress and/or normal stress load applications. 

 

Response to a Stress Step Function 

If a constant stress, σ0, is suddenly applied to a Kelvin–Voigt material, then the strain approaches the 

strain of the pure elastic material,
E

0σ
, as a decaying exponential: 

Strain )1()( 0 te
E

t λσ −−= , where t is time and λ is the relaxation rate,  
η

λ E
=  

Load Load 
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If the stress is suddenly removed at time, t1, then the deformation is retarded in the return to zero 
deformation: 

Strain )1)(()( )(
11

1ttettt −−−=> λε  

Figure 2 shows the deformation versus time when constant stress on the material is applied suddenly 
at time, t = 0, and suddenly released at the later time, t1. 

 
Figure 2:  Deformation versus time for sudden application and release of constant stress 

 
The deformation, ∆L, over the length of the attachment, L, is: 
 

)1(0 te
E

LL λσ −−⎟
⎠
⎞

⎜
⎝
⎛=Δ  

 
The reactive spring rate of the mechanism, K, acts against the deformation, ∆L, to generate a creep 
force, ∆F. 

)1(0 te
E

KLF λσ −−⎟
⎠
⎞

⎜
⎝
⎛=Δ  

 
Drift due to the creep force, ∆F, can be expressed as a fraction of the full-scale force, FFS: 

)1(0 t

FSFS

e
EF

KL
F

F λσ −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Δ
 

 
The drift due to creep is proportional to the reactive spring rate of the mechanism and the 
applied load. Creep is inversely proportional to the modulus.  The time dependence is an 
exponential function with a time constant equal to the modulus divided by the viscosity. 
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